

Hilton Hotel Becoming LEED Certified

This survey will take about 5 minutes and will ask questions pertaining to your stay at hotels.

Survey Questions

1. How frequently do you travel and stay in hotels?
2. Are you familiar with the LEED rating system for buildings?

LEED rating system was developed and is administered by the United States Green Building Council (USGBS). It was designed to increase profitability of a building for all phases of its life (design, construction, and sustainability), while reducing the negative impact caused by these processes and promoting a healthier environment for its occupants and community. (USGBS website)
3. Given these aspects of LEED buildings, is this something that appeals to you? If so, what aspects do you find appealing?
4. Are you familiar with CO2 monitoring systems? Sensors will go off when high CO2 levels are obtained in the space. When this happens the mechanical system draws in more outside air to maintain a close to ambient level of CO 2 . Fresh air!

Are you aware of any hotels that do this?
5. If given the choice between a LEED rated hotel and a non-LEED rated hotel, which hotel would you stay at? Why would you choose to stay in that hotel?
6. Consider the hotel that you stayed in most recently:
a. What was the name of the hotel?
b. Did you stay on a weekday or weekend night?
c. How much did you pay per night for the room? (excluding taxes)
d. If the room had been in a LEED-certified hotel, would you be willing to pay more for the room because it is LEED certified? If so, how much more would you be willing to pay?
7. Would a hotel advertising they are LEED rated effect your decision? If yes, how? What type of information would you want to learn from advertising about LEED certified hotels?
8. How does online marketing affect your hotel decision?

Braced Frame Members

Level	Braced Frame \#1			Braced Frame \#3			Braced Frame \#4		
	Column	Chevron	Beam	Column	Chevron	Beam	Column	Chevron	Beam
PH Roof			W10x26			W10x26			W10x26
Penthouse	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
11	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
10	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
9	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
8	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
7	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
6	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
5	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
4	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
3	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x106	2L6x6x1/2	W10x26
2	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26	W18x175	2L6x6x1/2	W10x26
G	W18x175	2L6x6x5/8	W10x26	W18x175	2L6x6x5/8	W10x12	W18x175	2L6x6x1/2	W10x12
Foundation	W18x175	2L6x6x1/2		W18x175	2L6x6x1/2		W18x175	2L6x6x1/2	

	Braced Frame \#6			Braced Frame \#8		
Level	Column	Chevron	Beam	Column	Cross	Beam
PH Roof			W10x26			
Penthouse	W18x106	2L6x6x1/2	W10x26			W10x12
11	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
10	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
9	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
8	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
7	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
6	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
5	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
4	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
3	W18x106	2L6x6x1/2	W10x26	W14x82	HSS 7x4x1/2	W10x12
2	W18x175	2L6x6x1/2	W10x26	W14x145	HSS 7x4x1/2	W10x12
G	W18x175	2L6x6x1/2	W10x12	W14x145	HSS 7x5x5/8	W10x12
Foundation	W18x175	2L6x6x1/2		W14x145	HSS 7x4x1/2	

xxel Spreadsheets

	Braced Frame \#11			Braced Frame \#2			Braced Frame \#5			
Level	Column	Chevron	Beam	Column	Cross	Beam	Columns	Chevron	Crosss	Beam
PH Roof						W10x12				W10x19
Penthouse				W18x175	HSS 8x8x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x30
11				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
10				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
9				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
8				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
7				W18x175	HSS $8 \times 4 \times 5 / 8$	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
6				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
5				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x3/8	HSS 7x4x3/8	W10x22
4				W18x175	HSS 8x4x5/8	W10x12	W18x106	HSS 7x4x1/2	HSS 7x4x3/8	W10x22
3				W18x175	HSS $8 \times 4 \times 5 / 8$	W10x12	W18x106	HSS 7x4x1/2	HSS 7x4x3/8	W10x22
2			W12x40	W18x175	HSS 8x4x5/8	W10x12	W18x175	HSS 7x5x1/2	HSS 7x5x1/2	W10x30
G	W12x96	HSS 8x8x1/2	W12x40	W18x175	HSS 8x4x5/8	W10x12	W18x175	HSS 7x7x1/2	HSS 7x5x1/2	W10x30
Foundation	W12x96	HSS 8x8x1/2		W18x175	HSS 8x4x5/8	W10x12	W18x175	HSS 7x4x3/8	HSS 7x4x3/8	

	Braced Frame \#7			Braced Frame \#9			Braced Frame \#10		
Level	Column	Chevron	Beam	Column	Chevron	Beam	Column	Chevron	Beam
PH Roof			W10x12						
Penthouse	W18x106	HSS 7x4x3/8	W12x14			W10x26			W10x26
11	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
10	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS $7 \times 4 \times 3 / 8$	W10x26
9	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
8	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
7	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
6	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
5	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
4	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
3	W18x106	HSS 7x4x3/8	W12x14	W14x82	HSS 7x4x3/8	W10x26	W14x82	HSS 7x4x3/8	W10x26
2	W18x175	HSS 7x4x3/8	W12x14	W14x145	HSS 7x4x3/8	W10x26	W14x145	HSS $7 \mathrm{x} 4 \mathrm{x} 3 / 8$	W10x26
G	W18x175	HSS 7x5x1/2	W12x14	W14x145	HSS 7x7x1/4	W10x26	W14x145	HSS 7x7x1/4	W10x26
Foundatior	W18x175	HSS 7x4x3/8		W14x145	HSS 7x4x3/8		W14x145	HSS 7x4x3/8	

Wind Calculations

Exposure Class	B
Importance Factor I	1
Topographic Factor K_{zt}	1
Wind Directionality Factor K_{d}	0.85
Basic Wind Speed V (mph)	90
N-S Length of Bldg.	292.17
E-W Length of Bldg.	243.67
Ct factor in the N-S Direction	0.02
Ct factor in the E-W Direction	0.02

Level Heights(ft)	Level	hx	Kz	qz	Pressures					
					NS windward	NS leeward	NS Pressure	EW windward	EW leeward	EW Pressure
15.7	Penthouse	129.67	1.09	19.21	13.99	-5.24	19.23	13.06	-8.17	21.23
11	11	114	1.04	18.33	13.34	-4.37	17.72	12.46	-8.17	20.63
9	10	103	1.04	18.33	13.34	-4.37	17.72	12.46	-8.17	20.63
9	9	94	0.99	17.45	12.70	-4.37	17.07	11.87	-8.17	20.03
9	8	85	0.96	16.92	12.32	-4.37	16.69	11.51	-8.17	19.67
9	7	76	0.93	16.39	11.93	-4.37	16.30	11.15	-8.17	19.31
9	6	67	0.89	15.69	11.42	-4.37	15.79	10.67	-8.17	18.83
9	5	58	0.85	14.98	10.91	-4.37	15.28	10.19	-8.17	18.35
9	4	49	0.81	14.28	10.39	-4.37	14.76	9.71	-8.17	17.87
9	3	40	0.76	13.40	9.75	-5.24	15.00	9.11	-8.17	17.27
13	2	31	0.76	13.40	9.75	-5.24	15.00	9.11	-8.17	17.27
18	1	18	0.62	10.93	7.96	-5.24	13.20	7.43	-8.17	15.60
0	Ground	0	0.57	10.05	7.31	-5.24	12.56	6.83	-8.17	15.00

acting at floor level						
Level	Forces (k)		Shears (k)		Overturning Moment	
	N/S	E/W	N/S	E/W	N/S	E/W
ph roof	11.60	23.95	11.60	23.95	1504.12	3105.1
ph floor	19.88	52.99	31.48	76.94	3588.84	8771.1
11th floor	15.06	52.81	46.54	129.75	4793.54	13364.5
10th floor	13.31	46.84	59.85	176.59	5625.53	16599.8
9th floor	12.91	45.74	72.76	222.33	6184.63	18898.0
8th flooor	12.62	44.91	85.38	267.24	6488.88	20310.0
7 floor	12.28	43.94	97.66	311.18	6542.97	20849.0
6 floor	11.88	42.84	109.54	354.02	6353.31	20532.9
5th floor	11.49	41.73	121.03	395.75	5930.51	19391.6
4th floor	11.38	42.04	132.41	437.79	5296.57	17511.7
3rd floor	20.16	52.44	152.58	490.24	4729.90	15197.3
2nd floor	43.38	72.00	195.95	562.24	3527.15	10120.2

Seismic Calculations

Seismic Design Criteria (Ch.11)	
S_{s}	0.15
$\mathrm{~S}_{1}$	0.053
Site Class	D
F_{a}	1.6
$\mathrm{~F}_{\mathrm{v}}$	2.4
$\mathrm{~S}_{\mathrm{MS}}$	0.240
$\mathrm{~S}_{\mathrm{M} 1}$	0.1272
$\mathrm{~S}_{\mathrm{DS}}$	0.160
$\mathrm{~S}_{\mathrm{D} 1}$	0.0848
Ct	0.02
$\mathrm{~h}_{\mathrm{n}}(\mathrm{ft})$	131.00
X	0.75
$\mathrm{~T}_{\mathrm{a}}$	0.77
$\mathrm{~T}_{\mathrm{o}}$	0.11
$\mathrm{~T}_{\mathrm{s}}$	0.53
$\mathrm{~T}_{\mathrm{L}}$	8.00
$\mathrm{~S}_{\mathrm{a}}$	0.11
Occ. Category	II
Importance factor (I)	1.0
Seismic Design Category	B

Footing Take-off

Existing Footings

Type	Width (ft)	Length (ft)	Depth (ft)	Vol (ft^3)	Cubic yd.s	Quantity	Total Volume(ft^3)
F-3.0	3	3	1	9.00	0.33	1	0.33
F-3.5	3.5	3.5	1.17	14.29	0.53	6	3.18
F-4.0	4	4	1.33	21.33	0.79	7	5.53
F-4.5	4.5	4.5	1.67	33.75	1.25	4	5.00
F-5.0	5	5	1.83	45.83	1.70	9	15.28
F-5.5	5.5	5.5	2.00	60.50	2.24	1	2.24
F-6.0	6	6	2.08	75.00	2.78	1	2.78
F-6.5	6.5	6.5	2.25	95.06	3.52	1	3.52
F-7.0	7	7	2.42	118.42	4.39	4	17.54
F-7.5	7.5	7.5	2.58	145.31	5.38	3	16.15
F-8.0	8	8	2.75	176.00	6.52	5	32.59
F-8.5	8.5	8.5	2.92	210.73	7.80	12	93.66
F-9.0	9	9	3.00	243.00	9.00	10	90.00
F-9.5	9.5	9.5	3.17	285.79	10.58	2	21.17
F-10	10	10	3.33	333.33	12.35	5	61.73
F-12.5x9.0	12.6	9	3.50	396.90	14.70	1	14.70
F-3.0x5.0	3	5	1.50	22.50	0.83	1	0.83
F-5x8.5	5	8.5	2.25	95.63	3.54	1	3.54
TOTAL							389.77

Includes Construction	Area (ft^{2})	Material		
		CIP	Pre-cast plank	Fireproofing
Floor Area Takoff		\$6.79/s.f.	\$9.00/s.f	\$1.68/s.f
Penthouse Roof	4928	\$33,461.12		\$8,279.04
Penthouse	15984	\$108,531.36		\$26,853.12
Flrs. 4-11	127872		\$1,150,848.00	\$214,824.96
3rd	17392	\$118,091.68		\$29,218.56
2nd	22120	\$150,194.80		\$37,161.60
Ground	49204	\$334,095.16		\$82,662.72
Total	237500	\$744,374.12	\$1,150,848.00	\$399,000.00

[^0]

Beams
Beams

Floor	Volume (ft^3)		C.Y.	
Penthouse Roof	748.16		27.7	$\$ 28,402.36$
Penthouse	686.19		25.4	$\$ 26,049.82$
Flrs. 4-11	1587.19	58.8	$\$ 60,254.44$	
3rd	606.38	22.5	$\$ 23,019.79$	
2nd	606.38	22.5	$\$ 23,019.79$	
Ground	519.75	19.3	$\$ 19,731.25$	
Total		176.1	$\$ 180,477.45$	

Columns
Columns

Floor	Volume $\left(\mathrm{ft}^{\wedge} 3\right)$	C.Y.
Penthouse Roof	372.75	
Penthouse	16862.22	13.8
Flrs. 4-11	1897.00	70.3
3rd	2079.00	77.0
2nd	4491.00	166.3
Ground		951.9

\$1475 per s.f

	Post Tension		
		PT	
Floor	Area		\$1.89 per s.f
Penthouse Roof		4928	\$9,313.92
Penthouse		15984	\$30,209.76
Flrs. 4-11		127872	\$241,678.08
Total			\$281,201.76

| | Shear Walls
 Volume (ft^3) | cubic yards |
| :--- | ---: | ---: | ---: | \$365/per cubic yard

Grand Total \$5,126,712.35

Calculations

Calculations

(heck Next splice at Floor $7 \quad L_{1}=4^{\prime}$

$$
\begin{aligned}
& \omega 12 \times 53 \\
& P=355^{\mathrm{k}} \quad M_{\mathrm{nit}}=52.2^{\mathrm{k}} \\
& P_{n / a}=406^{\mathrm{k}} \quad M_{n a}=193^{1 \mathrm{k}} \\
& C_{m}=0.6 \\
& P_{e 1}=\frac{\pi^{2}(29000)\left(425^{4} i^{4}\right)}{\left(10 \times 9^{1} \times 12^{-1}\right)^{2}}=10429^{\mathrm{K}} \\
& B_{1}=\left[\frac{06}{1-[1.6 \times 355 / 10429]}=0.63 \quad \therefore B_{1}=1.0\right. \\
& \frac{P_{T}}{P_{c}}=\frac{355}{406}=3.87 \quad \therefore 0.2 \quad \therefore H+l a \\
& 0.86+\frac{8}{4}\left(\frac{52.2}{193}\right)=1.1 \therefore \text { No Good } \\
& \begin{array}{lrl}
\text { Try } & 12 \times 58 \\
p_{\text {min }} & =4.4 .6^{k} \quad M / n=216^{1 k}
\end{array} \\
& \frac{P_{r}}{P_{c}}=\frac{355}{446}=0.19 \quad: 0.2 \\
& 079+\frac{8}{8}\left(\frac{52.2}{216}\right)=1.0 \therefore K \\
& \begin{array}{l}
\text { Change Ram results } \\
\text { FI. T-9 to } \omega 12 \times 58
\end{array}
\end{aligned}
$$

Calculations

[^0]: Total of s.f costs
 \$2,294,222.12

